MODEL:

VM-114H4C
2 Input 1:4 HDMI DA/4x CAT5 Outputs

P/N: 2900-000645 Rev 11
VM-114H4C Quick Start Guide

This guide helps you install and use your product for the first time. For more detailed information, go to http://www.kramerav.com/manual/VM-114H4C to download the latest manual or scan the QR code on the left.

Step 1: Check what’s in the box

- **VM-114H4C**
- 2 Input 1:4 HDMI DA/4xCAT5 Outputs
- 1 Power supply (12V DC)
- 4 Rubber feet
- 1 Quick Start sheet
- Kramer RC-IR3 Infrared Remote Control Transmitter with batteries and user manual

Save the original box and packaging materials in case you need to return your VM-114H4C for service.

Step 2: Install the VM-114H4C

Attach the rubber feet and place on a table or mount the VM-114H4C in a rack (using an optional RK-1 rack mount).

Step 3: Connect the inputs and outputs

Always switch off the power on each device before connecting it to your VM-114H4C.

Always use Kramer high-performance cables for connecting AV equipment to the VM-114H4C.

Step 4: Connect the power

Connect the 12V DC power adapter to the VM-114H4C and plug the adapter into the mains electricity.

Step 5: Acquire the EDID

1. Press the EDID SELECT button to cycle through the EDID sources in the following order:
 - Output 1 (Output 1 LED lights)
 - Output 2 (Output 2 LED lights)
 - Output 3 (Output 3 LED lights)
 - Output 4 (Output 4 LED lights)
 - Default EDID (all LEDs light)
 - Auto-Mix EDID (the LEDs flash in a running sequence)
2. To store the EDID, press EDID READ and the EDID is acquired.
Contents

1 Introduction 1
2 Getting Started 2
 2.1 Achieving the Best Performance 2
 2.2 Safety Instructions 3
 2.3 Recycling Kramer Products 3
3 Overview 4
 3.1 Using Twisted Pair Cable 5
 3.2 About the Power Connect™ Feature 5
 3.3 Defining the VM-114H4C 6
4 Connecting the VM-114H4C 8
 4.1 Connecting to the VM-114H4C via RS-232 9
5 Using the VM-114H4C 10
 5.1 Acquiring the EDID 10
 5.2 Disabling/Enabling Deep Color Support 11
6 RS-232, IR Control and Pass-through 12
 6.1 RS-232 Control and Pass-through Using the VM-114H4C 12
 6.2 Local IR Control and IR Pass-through Using the VM-114H4C 13
 6.3 Wiring the TP LINE IN / LINE OUT RJ-45 Connectors 16
7 Technical Specifications 17
8 Default Communication Parameters 18
9 Default EDID 19
10 Protocol 2000 20
 10.1 Syntax 20
 10.2 Instruction Codes 21

Figures

Figure 1: VM-114H4C Front Panel 6
Figure 2: VM-114H4C Rear Panel 7
Figure 3: Connecting the VM-114H4C 2 Input 1:4 HDMI DA/4x CAT5 Outputs 9
Figure 4: VM-114H4C RS-232 Control and Pass-through 12
Figure 5: VM-114H4C IR Control and Pass-through Example One 14
Figure 6: VM-114H4C IR Control and Pass-through Example Two 14
Figure 7: VM-114H4C IR Control and Pass-through Example Three 15
Figure 8: TP PINOUT 16
Welcome to Kramer Electronics! Since 1981, Kramer Electronics has been providing a world of unique, creative, and affordable solutions to the vast range of problems that confront video, audio, presentation, and broadcasting professionals on a daily basis. In recent years, we have redesigned and upgraded most of our line, making the best even better!

Our 1,000-plus different models now appear in 14 groups that are clearly defined by function: GROUP 1: Distribution Amplifiers; GROUP 2: Switchers and Routers; GROUP 3: Control Systems; GROUP 4: Format/Standards Converters; GROUP 5: Range Extenders and Repeaters; GROUP 6: Specialty AV Products; GROUP 7: Scan Converters and Scalers; GROUP 8: Cables and Connectors; GROUP 9: Room Connectivity; GROUP 10: Accessories and Rack Adapters; GROUP 11: Sierra Video Products; GROUP 12: Digital Signage; GROUP 13: Audio; and GROUP 14: Collaboration.

Congratulations on purchasing your Kramer VM-114H4C 2 Input 1:4 HDMI DA/4x CAT5 Outputs, which is ideal for the following typical applications:

- Home theater, presentation and multimedia applications
- Rental and staging
2 Getting Started

We recommend that you:

- Unpack the equipment carefully and save the original box and packaging materials for possible future shipment
- Review the contents of this user manual

Go to http://www.kramerav.com/downloads/ to check for up-to-date user manuals, application programs, and to check if firmware upgrades are available (where appropriate).

2.1 Achieving the Best Performance

To achieve the best performance:

- Use only good quality connection cables (we recommend Kramer high-performance, high-resolution cables) to avoid interference, deterioration in signal quality due to poor matching, and elevated noise levels (often associated with low quality cables)
- Do not secure the cables in tight bundles or roll the slack into tight coils
- Avoid interference from neighboring electrical appliances that may adversely influence signal quality
- Position your Kramer VM-114H4C away from moisture, excessive sunlight and dust

This equipment is to be used only inside a building. It may only be connected to other equipment that is installed inside a building.
2.2 Safety Instructions

Caution: There are no operator serviceable parts inside the unit

Warning: Use only the Kramer Electronics power supply that is provided with the unit

Warning: Disconnect the power and unplug the unit from the wall before installing

2.3 Recycling Kramer Products

The Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC aims to reduce the amount of WEEE sent for disposal to landfill or incineration by requiring it to be collected and recycled. To comply with the WEEE Directive, Kramer Electronics has made arrangements with the European Advanced Recycling Network (EARN) and will cover any costs of treatment, recycling and recovery of waste Kramer Electronics branded equipment on arrival at the EARN facility. For details of Kramer’s recycling arrangements in your particular country go to our recycling pages at http://www.kramerelectronics.com/support/recycling/.
3 Overview

The high quality VM-114H4C is a switcher/distribution amplifier for HDMI and TP (Twisted Pair) signals. It reclocks and equalizes one of two selectable input signals and distributes it to four TP outputs.

In particular, the VM-114H4C:

- Supports up to 4.95Gbps (1.65Gbps bandwidth per graphic channel) (DGKat)
- Can read and store in non-volatile memory the default EDID or the EDID block from one or a mix of the output display devices, so it can then provide the EDID information to the source even if the display device is not connected. The EDID acquired is a weighted average of all the connected outputs. For example, if several displays with different resolutions are connected to the outputs, the acquired EDID supports all the resolutions, as well as other parameters included in the EDID.
- Features I-EDIDPro™ Kramer Intelligent EDID Processing™ – Intelligent EDID handling & processing algorithm ensures Plug and Play operation for HDMI systems
- Supports HDMI 3D Pass-through, Deep Color, x.v.Color™ and uncompressed audio channels (Dolby TrueHD, DTS-HD)
- Is HDCP compliant
- Features LEDs indicating the selected input and active output
- Supports IR remote control and has a remote IR 3.5mm mini jack
- Is 12V DC fed and is housed in a Kramer Desktop enclosure

The VM-114H4C supports a range of:

- Up to 90m (295ft) at 1080i, or up to 30m (98ft) at 1080p on shielded BC-DGKat524 cable
- Up to 90m (295ft) at 1080i, or up to 50m (164ft) at 1080p on shielded BC-DGKat623 cable
- Up to 100m (330ft) at 1080i or up to 90m (295ft) at 1080p on shielded BC-DGKat7a23 cable
You can daisy-chain up to six devices with the maximum overall distance between the first and last devices being cumulative and limited by the cable type used.

3.1 Using Twisted Pair Cable

Kramer engineers have developed special twisted pair cables to best match our digital twisted pair products; the Kramer: **BC-DGKat524** (CAT 5 24 AWG), the Kramer: **BC-DGKat623** (CAT 6 23 AWG cable), and the Kramer: **BC-DGKat7a23** (CAT 7a 23 AWG cable). These specially built cables significantly outperform regular CAT 5 / CAT 6 / CAT 7a cables.

3.2 About the Power Connect™ Feature

The Power Connect™ feature here means that only one unit in a system, the transmitter or receiver, needs to be connected to a power source when the devices are within 90m (270ft) of each other. The Power Connect™ feature applies as long as the cable can carry power and the distance does not exceed 90m on standard TP cable. (Heavier gauge cable may be used to extend the Power Connect™ range).

Warning: Using a TP cable that is incorrectly wired can cause permanent damage to the device!
3.3 Defining the VM-114H4C

This section defines the VM-114H4C.

Figure 1: VM-114H4C Front Panel

<table>
<thead>
<tr>
<th>#</th>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IR Remote Control Sensor</td>
<td>Sensor for the remote control IR transmitter</td>
</tr>
<tr>
<td>2</td>
<td>IR LED</td>
<td>Lights yellow when receiving signals from the IR remote control transmitter</td>
</tr>
<tr>
<td>3</td>
<td>REMOTE IR 3.5mm Mini Jack</td>
<td>Connect to a remote infrared sensor</td>
</tr>
<tr>
<td>4</td>
<td>EDID READ Button</td>
<td>Press (when one of the output LEDs is flashing to indicate a selected output) to read the selected EDID (see Section 5.1)</td>
</tr>
<tr>
<td>5</td>
<td>EDID SELECT Button</td>
<td>Press repeatedly to cycle through the outputs to select an output from which to read the EDID. The relevant LED flashes (see Section 5.1)</td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT LEDS (1-4)</td>
<td>Press repeatedly to cycle through the outputs to select from which one to read the EDID. The relevant LED flashes (see Section 5.1)</td>
</tr>
<tr>
<td>7</td>
<td>POWER LED</td>
<td>Lights green when the unit receives power</td>
</tr>
<tr>
<td>8</td>
<td>INPUT SELECTOR Button</td>
<td>Press to select an input. The relevant input LED lights</td>
</tr>
<tr>
<td>9</td>
<td>IN1 (HDMI) Input LED</td>
<td>Lights green when HDMI input 1 is selected</td>
</tr>
<tr>
<td>10</td>
<td>IN2 (CAT5) Input LED</td>
<td>Lights green when the TP input 2 is selected</td>
</tr>
</tbody>
</table>
Figure 2: VM-114H4C Rear Panel

<table>
<thead>
<tr>
<th>#</th>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>RS-232 9-pin D-sub (F) Connector</td>
<td>Connect to a PC or remote controller</td>
</tr>
<tr>
<td>12</td>
<td>12V DC Power Connector</td>
<td>Connect to the +12V DC power adapter, center pin positive</td>
</tr>
<tr>
<td>13</td>
<td>IN1 (HDMI) Input HDMI Connector</td>
<td>Connect to an HDMI source</td>
</tr>
<tr>
<td>14</td>
<td>IN2 (CAT5) Input RJ-45 Connector</td>
<td>Connect to a TP source (for example, PT-571 HDMI Line Transmitter, VM-114H2C or VM-114H4C)</td>
</tr>
<tr>
<td>15</td>
<td>TP RJ-45 Output Connectors (1-4)</td>
<td>Connect to the TP acceptors (for example, PT-572+ HDMI Line Receiver, VM-114H or VM-114H4C)</td>
</tr>
</tbody>
</table>
4 Connecting the VM-114H4C

Always switch off the power to each device before connecting it to your VM-114H4C. After connecting your VM-114H4C, connect its power and then switch on the power to each device.

To connect the VM-114H4C as illustrated in the example in Figure 3:

1. Connect the HDMI source (for example, a DVD player) to the IN 1 (HDMI) connector.

2. Connect the TP source (for example, a PT-571 HDMI Line Transmitter, another VM-114H2C or a VM-1114H4C) to the IN 2 (CAT 5) connector.

3. Connect the TP RJ-45 outputs to up to four TP acceptors (for example, the PT-572+ Line Receiver, the VM-114H or the VM-114H2C).

4. (Optional) Connect the front panel remote IR 3.5mm mini jack to the remote IR sensor.

5. (Optional) Connect a PC via RS-232 to the RS-232 port on the VM-114H4C (see Section 4.1).
4.1 Connecting to the VM-114H4C via RS-232

You can connect to the VM-114H4C via an RS-232 connection using, for example, a PC. Note that a null-modem adapter/connection is not required.

To connect to the VM-114H4C via RS-232:

- Connect the RS-232 9-pin D-sub rear panel port on the product unit via a 9-wire straight cable (only pin 2 to pin 2, pin 3 to pin 3, and pin 5 to pin 5 need to be connected) to the RS-232 9-pin D-sub port on your PC.
5 Using the VM-114H4C

This section explains how to:

- Acquire the EDID (Section 5.1)
- Enable/disable deep color support (Section 5.2)

5.1 Acquiring the EDID

Each input on the VM-114H4C has a factory default EDID loaded (see Section 9). This lets you connect the power before having to connect one of the acceptors. The VM-114H4C reads the EDID, which is stored in the non-volatile memory.

You can acquire the EDID from:

This is usually done only once, when the machine is being set up in an installation. Once acquired, the EDID is saved in non-volatile memory and further acquisition is not necessary.

- One output (the relevant output LED flashes)
- The default EDID (all output LEDs flash)
- Up to four connected outputs using the Auto-mix Mode (all output LEDs light)

 The EDID acquired is a weighted average of all the connected outputs. For example, if several displays with different resolutions are connected to the outputs, the acquired EDID supports all the resolutions, as well as other parameters included in the EDID.

To acquire the EDID:

1. Connect the output(s) from which you want to acquire the EDID.

2. Press the EDID SELECT button briefly. The last acquired EDID is indicated by the lit LED (for example, if Output LED 2 is lit, the EDID acquired was from Output 2).

 The device enters the EDID programming mode.

3. Press the EDID SELECT button repeatedly until the required EDID is indicated based on the patterns described above.

4. Press the EDID READ button.

 The relevant LEDs flash in a pattern for a few seconds as follows:
Slowly and then no longer lights. The EDID was successfully read
Quickly and then no longer lights. The EDID was not read and the default EDID was stored

5.2 Disabling/Enabling Deep Color Support

You can disable EDID deep color support to prevent signal deterioration when using long twisted pair cables on INPUT 2.

To disable deep color and acquire EDID:

1. Disconnect the power.

2. Connect the output or outputs from which you want to acquire the EDID.

3. Connect the power while pressing the EDID READ button.

4. Perform steps 3 through 5 in Section 5.1.

To enable deep color and acquire EDID:

1. Disconnect the power.

2. Connect the output or outputs from which you want to acquire the EDID.

3. Connect the power while pressing the EDID SELECT button.

4. Perform steps 3 through 5 in Section 5.1.
6 RS-232, IR Control and Pass-through

The VM-114H4C can be controlled via RS-232 and infrared. Depending on how the RS-232 and IR connections are configured dictates whether the device responds to control signals or transparently pass them through to another receiver or transmitter. Three examples of various configurations in Sections 6.2.1, 6.2.2 and 6.2.3 illustrate this functionality.

6.1 RS-232 Control and Pass-through Using the VM-114H4C

As shown in Figure 3, you can connect a PC (or other serial controller) directly to the VM-114H4C to control the VM-114H4C.

The VM-114H4C also transparently passes bidirectional RS-232 signals over the CAT 5 cable from the TP-573 transmitter to the TP-574 receiver. For example, a PC connected to the RS-232 port on the TP-573 can control an RS-232-controllable device (for example, a projection screen) connected to the TP-574.

Figure 4: VM-114H4C RS-232 Control and Pass-through
6.2 Local IR Control and IR Pass-through Using the VM-114H4C

The VM-114H4C provides an IR sensor and a 3.5mm mini jack for connecting a remote IR emitter or sensor. When the VM-114H4C is connected to suitable transmitters and receivers (for example, the TP-573 and TP-574), the VM-114H4C can act as a pass-through for IR control signals, allowing remote control of multiple devices using multiple IR remote controllers.

When there is no IR sensor or emitter connected to the IR Remote 3.5mm mini jack, all signals received by the IR sensor on the front panel are passed to the transmitter and receiver bi-directionally over the CAT 5 cable allowing control of remote devices.

When an IR sensor or emitter is connected to the IR Remote 3.5mm mini jack, the connection between the IR sensor on the front panel and the IR on the transmitter/receiver is broken so that any signal received by the IR sensor on the front panel remains local to the VM-114H4C and controls only the VM-114H4C.

To control any device you need to use the appropriate IR remote controller, for example, the Kramer remote controller controls Kramer devices, the LCD remote controller controls the LCD display and so on, as shown in the following examples.

The following examples illustrate just three of the possible ways of connecting the VM-114H4C to provide local and remote IR control.
6.2.1 IR Local Control and Pass-through, Example One

The configuration is shown in Figure 5.

Figure 5: VM-114H4C IR Control and Pass-through Example One

- A DVD player is connected to the TP-573 transmitter via an IR emitter.
- An LCD display is connected to the TP-574 receiver via an IR emitter.
- Both the TP-573 and the TP-574 are connected to the VM-114H4C via TP cabling.
- Point the appropriate remote control for the device at the VM-114H4C IR sensor to control a device.

6.2.2 IR Local Control and Pass-through, Example Two

The configuration is shown in Figure 6.

Figure 6: VM-114H4C IR Control and Pass-through Example Two
• An IR sensor is connected to the TP-573 transmitter.
• An LCD display is connected to the TP-574 receiver via an IR emitter.
• Both the TP-573 and the TP-574 are connected to the VM-114H4C via TP cabling.
• Point the LCD display remote control either at the TP-573 IR sensor or at the VM-114H4C IR sensor to control the LCD display. Point the Kramer remote control at the VM-114H4C IR sensor to control the VM-114H4C.

6.2.3 IR Local Control and Pass-through, Example Three

The configuration is shown in Figure 7.

Figure 7: VM-114H4C IR Control and Pass-through Example Three

• The first DVD player (player 1) is connected to the TP-573 transmitter via an IR emitter.
• The second DVD player (player 2) is connected to the VM-114H4C via an IR emitter.
• An IR sensor is connected to the TP-574 receiver.
• Both the TP-573 and the TP-574 are connected to the VM-114H4C via TP cabling.
• To control DVD player 1, point the DVD player 1 IR remote control at the TP-574 IR sensor. To control DVD player 2, point the DVD player 2 IR remote control at the TP-574 IR sensor. Point the Kramer remote control at the VM-114H4C IR sensor to control the VM-114H4C.
6.3 Wiring the TP LINE IN / LINE OUT RJ-45 Connectors

This section defines the TP pinout, using a straight pin-to-pin cable with RJ-45 connectors.

Note, that the cable ground shielding must be connected / soldered to the connector shield.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orange / White</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Green / White</td>
</tr>
<tr>
<td>4</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>Blue / White</td>
</tr>
<tr>
<td>6</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>Brown / White</td>
</tr>
<tr>
<td>8</td>
<td>Brown</td>
</tr>
</tbody>
</table>

Figure 8: TP PINOUT
Technical Specifications

| INPUTS: | 1 HDMI Connector
	1 TP on an RJ-45 Connector
OUTPUTS:	4 TP on RJ-45 Connectors
MAX. DATA RATE:	4.95Gbps (1.65Gbps bandwidth per graphic channel) (DGKat)
COMPLIANCE WITH HDMI STANDARD:	Supports HDMI and HDCP
CONTROLS:	Input select button, EDID select button, panel lock button, RS-232, local and remote IR controls
INDICATOR LEDS:	IR communication, Power, IN 1 HDMI, IN 2 CAT5, OUTPUT 1, 2, 3 and 4
POWER CONSUMPTION:	12V DC, 2A
OPERATING TEMPERATURE:	0° to +40°C (32° to 104°F)
STORAGE TEMPERATURE:	-40° to +70°C (-40° to 158°F)
HUMIDITY:	10% to 90%, RHL non-condensing
DIMENSIONS:	21.5cm x 16.3cm x 4.4cm (8.5in x 6.4in x 1.7in) W, D, H
WEIGHT:	0.9kg (1.98lbs) approx.
INCLUDED ACCESSORIES:	Power supply, RC-IR3 infrared remote control transmitter
OPTIONAL:	RK-1 19” rack adapter

Specifications are subject to change without notice at http://www.kramerelectronics.com
8 Default Communication Parameters

The following table lists the default Protocol 2000 communication parameters for the **VM-114H4C**.

<table>
<thead>
<tr>
<th>RS-232</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate:</td>
<td>9600</td>
</tr>
<tr>
<td>Data Bits:</td>
<td>8</td>
</tr>
<tr>
<td>Stop Bits:</td>
<td>1</td>
</tr>
<tr>
<td>Parity:</td>
<td>None</td>
</tr>
<tr>
<td>Command Format:</td>
<td>HEX</td>
</tr>
<tr>
<td>Example (Output 1 to Input 1):</td>
<td>0x01, 0x81, 0x81, 0x81</td>
</tr>
</tbody>
</table>
The factory default EDID is listed below:

Monitor
Model name............... VM114H4C
Manufacturer......... KRM
Plug and Play ID........ KRM0114
Serial number........ 505-707455010
Manufacture date..... 2009, ISO week 10

EDID revision......... 1.3
Input signal type..... Digital
Color bit depth......... Undefined
Display type.......... RGB color
Screen size........ 520 x 320 mm (24.0 in)
Power management....... Standby, Suspend, Active off/sleep
Extension blocs....... 1 (CEA-EXT)

DDC/CI................ n/a

Color characteristics
Default color space...... Non-sRGB
Display gamma.......... 2.20
Red chromaticity........ Rx 0.674 - Ry 0.319
Green chromaticity..... Gx 0.188 - Gy 0.706
Blue chromaticity....... Bx 0.148 - By 0.064
White point (default)... Wx 0.313 - Wy 0.329
Additional descriptors... None

Timing characteristics
Horizontal scan range....30-83kHz
Vertical scan range..... 56-76Hz
Video bandwidth.......... 170MHz
CVT standard........ Not supported
GTF standard........ Not supported
Additional descriptors... None
Preferred timing....... Yes
Native/preferred timing.. 1280x720p at 60Hz (16:10)
Modeline............... "1280x720" 74.250 1280 1390 1430 1650 720 725 730 750 +hsync +vsync

Standard timings supported
720 x 400p at 70Hz - IBM VGA
640 x 480p at 60Hz - IBM VGA
640 x 480p at 75Hz - VESA
800 x 600p at 60Hz - VESA
800 x 600p at 75Hz - VESA
1024 x 768p at 60Hz - VESA
1024 x 768p at 75Hz - VESA
1280 x 1024p at 75Hz - VESA
1280 x 1024p at 60Hz - VESA STD
1600 x 1200p at 60Hz - VESA STD
1152 x 864p at 75Hz - VESA ST
Protocol 2000

Protocol 2000 is an RS-232/RS-485 communication protocol that uses four bytes of information as defined below.

For RS-232, a null-modem connection between the machine and controller is used. The default data rate is 9600 baud, with no parity, 8 data bits and 1 stop bit.

Note: Compatibility with Kramer’s Protocol 2000 does not mean that a machine uses all of the protocol commands. Each machine uses a sub-set of Protocol 2000, according to its needs.

10.1 Syntax

<table>
<thead>
<tr>
<th>MSB</th>
<th>DESTINATION</th>
<th>INSTRUCTION</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D</td>
<td>N5</td>
<td>N4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>N3</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td>N0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Byte</th>
<th>INPUT</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I6</td>
<td>I5</td>
<td>I4</td>
<td>I3</td>
<td>I2</td>
<td>I1</td>
<td>I0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>I6</td>
<td>I5</td>
<td>I4</td>
<td>I3</td>
<td>I2</td>
<td>I1</td>
<td>I0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Byte</th>
<th>OUTPUT</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O6</td>
<td>O5</td>
<td>O4</td>
<td>O3</td>
<td>O2</td>
<td>O1</td>
<td>O0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>O6</td>
<td>O5</td>
<td>O4</td>
<td>O3</td>
<td>O2</td>
<td>O1</td>
<td>O0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4th Byte</th>
<th>MACHINE NUMBER</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OVR X</td>
<td>M4</td>
<td>M3</td>
<td>M2</td>
<td>M1</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OVR X</td>
<td>M4</td>
<td>M3</td>
<td>M2</td>
<td>M1</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1st Byte:
- Bit 7 – Defined as 0
- D – DESTINATION:
 - 0 – Sends information to the switchers (from the PC)
 - 1 – Sends information to the PC (from the switcher)
- N5…N0 – INSTRUCTION

The 6-bit INSTRUCTION defines the function performed by the switcher(s). If a function is performed using the machine’s keyboard, these bits are set with the INSTRUCTION NO. performed. The instruction codes are defined according to the table below (INSTRUCTION NO. is the value set in N5…N0).

2nd Byte:
- Bit 7 – Defined as 1
- I6…I0 – INPUT

When switching (i.e. instruction codes 1 and 2), the 7-bit INPUT is set as the input number to be switched. If switching is done using the machine’s front panel, these bits are set with the INPUT NUMBER switched. For other operations, these bits are defined according to the table.

3rd Byte:
- Bit 7 – Defined as 1
- O6…O0 – OUTPUT

When switching (i.e. instruction codes 1 and 2), the 7-bit OUTPUT is set as the output number to be switched. If switching is done using the machine’s front panel, these bits are set with the OUTPUT NUMBER switched. For other operations, these bits are defined according to the table.

4th Byte:
- Bit 7 – Defined as 1
- Bit 5 – Don’t care
- OVR – Machine number override
- M4…M0 – MACHINE NUMBER

This byte is used to address machines in a system by their machine numbers. When several machines are controlled from a single serial port, they are usually configured together and each machine has an individual machine number. If the OVR bit is set, then all machine numbers accept (implement) the command and the addressed machine replies. When a single machine is controlled over the serial port, always set M4…M0 to 1, and make sure that the machine itself is configured as MACHINE NUMBER = 1.
10.2 Instruction Codes

All the values in the table are decimal, unless otherwise stated

Instruction Codes for Protocol 2000

<table>
<thead>
<tr>
<th>#</th>
<th>Instruction</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWITCH VIDEO</td>
<td>Set equal to video input that is switched (0 = disconnect)</td>
<td>Set equal to video output that is switched (0 = to all the outputs)</td>
</tr>
<tr>
<td>61</td>
<td>IDENTIFY MACHINE</td>
<td>1 – Video machine name</td>
<td>For names:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – Audio machine name</td>
<td>0 – Request first 4 digits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – Video software version</td>
<td>1 – Request first suffix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 – Audio software version</td>
<td>2 – Request second suffix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 – RS-422 controller name</td>
<td>3 – Request third suffix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 – RS-422 controller version</td>
<td>10 – Request first prefix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 – Remote control name</td>
<td>11 – Request second prefix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 – Remote software version</td>
<td>12 – Request third prefix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 – Protocol 2000 revision</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 – Control data machine name</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 – Control data software version</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>DEFINE MACHINE</td>
<td>1 – Number of inputs</td>
<td>1 – For video</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – Number of outputs</td>
<td>2 – For audio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – Number of setups</td>
<td>3 – For SDI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 – For remote panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 – For RS-422 controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 – For control data</td>
</tr>
</tbody>
</table>

NOTES on the above table:

NOTE 2 – These are bi-directional definitions. If the switcher receives the code, it performs the instruction. If the instruction is performed (due to a keystroke operation on the front panel), then these codes are sent. For example, if the PC sends HEX code: 01 85 88 83 then the switcher (machine 3) switches input 5 to output 8. If the user switches input 1 to output 7 using the front panel buttons, the switcher sends HEX code: 41 81 87 83 to the PC. When the PC sends one of the commands in this group to the switcher, if the instruction is valid, the switcher replies by sending the same four bytes to the PC that it received (except for the first byte, where the DESTINATION bit is set high).

NOTE 13 – This is a request to identify the switcher/s in the system. If the OUTPUT is set as 0, and the INPUT is set as 1, 2, 5 or 7, the machine sends its name. The reply is the decimal value of the INPUT and OUTPUT. For example, for a 2216, the reply to the request to send the audio machine name is HEX code: 7D 96 90 81 (i.e. 128_{dec} + 22_{dec} for 2\text{nd} byte, and 128_{dec} + 16_{dec} for 3\text{rd} byte).

If the request for identification is sent with the INPUT set as 3 or 4, the appropriate machine sends its software version number. Again, the reply would be the decimal value of the INPUT and OUTPUT - the INPUT representing the number in front of the decimal point, and the OUTPUT representing the number after it. For example, for version 3.5, the reply to the request to send the version number would be HEX code: 7D 83 85 81 (i.e. 128_{dec} + 3_{dec} for 2\text{nd} byte, 128_{dec} + 5_{dec} for 3\text{rd} byte).

If the OUTPUT is set as 1, then the ASCII coding of the lettering following the machine’s name is sent. For example, for the VS-7588YC, the reply to the request to send the first suffix would be HEX code: 7D D9 C3 81 (i.e. 128_{dec} + ASCII for “Y”; 128_{dec} + ASCII for “C”).

NOTE 14 – The number of inputs and outputs refers to the specific machine being addressed, not to the system. For example, if six 16x16 matrices are configured to make a 48x32 system (48 inputs, 32 outputs), the reply to the HEX code: 3E 82 81 would be HEX code: 7E 82 90 (i.e. request the number of outputs)
LIMITED WARRANTY

The warranty obligations of Kramer Electronics for this product are limited to the terms set forth below.

What is Covered
This limited warranty covers defects in materials and workmanship in this product.

What is Not Covered
This limited warranty does not cover any damage, deterioration or malfunction resulting from any alteration, modification, improper or unreasonable use or maintenance, misuse, abuse, accident, neglect, exposure to excess moisture, fire, improper packing and shipping (such claims must be presented to the carrier), lightning, power surges, or other acts of nature. This limited warranty does not cover any damage, deterioration or malfunction resulting from the installation or removal of this product from any installation, any unauthorized tampering with this product, any repairs attempted by anyone unauthorized by Kramer Electronics to make such repairs, or any other cause which does not relate directly to a defect in materials and/or workmanship of this product. This limited warranty does not cover cartons, equipment enclosures, cables or accessories used in conjunction with this product.

Without limiting any other exclusion herein, Kramer Electronics does not warrant that the product covered hereby, including, without limitation, the technology and/or integrated circuit(s) included in the product, will not become obsolete or that such items are or will remain compatible with any other product or technology with which the product may be used.

How Long Does This Coverage Last
Seven years as of this printing; please check our Web site for the most current and accurate warranty information.

Who is Covered
Only the original purchaser of this product is covered under this limited warranty. This limited warranty is not transferable to subsequent purchasers or owners of this product.

What Kramer Electronics will do
Kramer Electronics will, at its sole option, provide one of the following three remedies to whatever extent it shall deem necessary to satisfy a proper claim under this limited warranty:

1. Elect to repair or facilitate the repair of any defective parts within a reasonable period of time, free of any charge for the necessary parts and labor to complete the repair and restore this product to its proper operating condition. Kramer Electronics will also pay the shipping costs necessary to return this product once the repair is complete.
2. Replace this product with a direct replacement or with a similar product deemed by Kramer Electronics to perform substantially the same function as the original product.
3. Issue a refund of the original purchase price less depreciation to be determined based on the age of the product at the time remedy is sought under this limited warranty.

What Kramer Electronics will not do Under This Limited Warranty
If this product is returned to Kramer Electronics or the authorized dealer from which it was purchased or any other party authorized to repair Kramer Electronics products, this product must be insured during shipping. Kramer Electronics will not be responsible for any costs related to the removal or re-installation of this product from or into any installation. Kramer Electronics will not be responsible for any costs related to any setting up this product, any adjustment of user controls or any programming required for a specific installation of this product.

How to Obtain a Remedy under this Limited Warranty
To obtain a remedy under this limited warranty, you must contact either the authorized Kramer Electronics reseller from whom you purchased this product or the Kramer Electronics office nearest you. For a list of authorized Kramer Electronics resellers and/or Kramer Electronics authorized service providers, please visit our web site at www.kramerelectronics.com or contact the Kramer Electronics office nearest you.

In order to pursue any remedy under this limited warranty, you must possess an original, dated receipt as proof of purchase from an authorized Kramer Electronics reseller. If this product is returned under this limited warranty, a return authorization number, obtained from Kramer Electronics, will be required. You may also be directed to an authorized reseller or person authorized by Kramer Electronics to repair the product.

If it is decided that this product should be returned directly to Kramer Electronics, this product should be properly packed, preferably in the original carton, for shipping. Cartons not bearing a return authorization number will be refused.

Limitation on Liability
THE MAXIMUM LIABILITY OF KRAMER ELECTRONICS UNDER THIS LIMITED WARRANTY SHALL NOT EXCEED THE ACTUAL PURCHASE PRICE PAID FOR THE PRODUCT. TO THE MAXIMUM EXTENT PERMITTED BY LAW, KRAMER ELECTRONICS IS NOT RESPONSIBLE FOR DIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY BREACH OF WARRANTY OR CONDITION, OR UNDER ANY OTHER LEGAL THEORY. Some countries, districts or states do not allow the exclusion or limitation of liability, so the limitation of liability to specified amounts, so the above limitations or exclusions may not apply to you.

Exclusive Remedy
TO THE MAXIMUM EXTENT PERMITTED BY LAW, THIS LIMITED WARRANTY AND THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, REMEDIES AND CONDITIONS, WHETHER ORAL OR WRITTEN, EXPRESS OR IMPLIED. TO THE MAXIMUM EXTENT PERMITTED BY LAW, KRAMER ELECTRONICS SPECIFICALLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IF KRAMER ELECTRONICS CANNOT LAWFULLY DISCLAIM OR EXCLUDE IMPLIED WARRANTIES UNDER APPLICABLE LAW, THEN ALL IMPLIED WARRANTIES COVERING THIS PRODUCT, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, SHALL APPLY TO THIS PRODUCT AS PROVIDED UNDER APPLICABLE LAW.

If ANY PRODUCT TO WHICH THIS LIMITED WARRANTY APPLIES IS A "CONSUMER PRODUCT" UNDER THE MAGNUSON-MOSS WARRANTY ACT (15 U.S.C.A. §2301, ET SEQ.) OR OTHER APPLICABLE LAW, THE FOREGOING DISCLAIMER OF IMPLIED WARRANTIES SHALL NOT APPLY TO YOU, AND ALL IMPLIED WARRANTIES ON THIS PRODUCT, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR THE PARTICULAR PURPOSE, SHALL APPLY AS PROVIDED UNDER APPLICABLE LAW.

Other Conditions
This limited warranty gives you specific legal rights, and you may have other rights which vary from country to country or state to state.

This limited warranty is void if (i) the label bearing the serial number of this product has been removed or defaced, (ii) the product is not distributed by Kramer Electronics or (iii) this product is not purchased from an authorized Kramer Electronics reseller. If you are unsure whether a reseller is an authorized Kramer Electronics reseller, please visit our Web site at www.kramerelectronics.com or contact your local Kramer Electronics office. Your rights under this limited warranty are not diminished if you do not complete and return the product registration form or complete and submit the online product registration form. Kramer Electronics thanks you for purchasing a Kramer Electronics product. We hope it will give you years of satisfaction.
For the latest information on our products and a list of Kramer distributors, visit our Web site where updates to this user manual may be found.

We welcome your questions, comments, and feedback.
Web site: www.kramerelectronics.com
E-mail: info@kramerel.com

SAFETY WARNING
Disconnect the unit from the power supply before opening and servicing.

P/N: 2900-000645
Rev: 11