MODEL:

VP-793
Warp-Blend
VP-793
Operating Instructions

Version K1.3
This manual explains how to operate your VP-793 warp-blend scaler. VP-793 is designed to provide users with a powerful and flexible method of driving large display devices, and multiple screen applications including flexible geometry correction functions.

If you have any queries relating to this or any other product supplied by Kramer visit our Web site www.kramerelectronics.com.

For technical support e-mail tech@kramerel.com

COPYRIGHT

This document and the software described within it are copyrighted with all rights reserved. Under copyright laws, neither the documentation nor the software may be copied, photocopied, reproduced, translated, or reduced to electronic medium or machine readable form, in whole or in part, without prior written consent of Kramer Electronics Ltd ("Kramer"). Failure to comply with this condition may result in prosecution.

Kramer does not warrant that this product package will function properly in every hardware and software environment. Although Kramer has tested the hardware, firmware, software and reviewed the documentation, KRAMER MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS HARDWARE, FIRMWARE, SOFTWARE OR DOCUMENTATION, THEIR QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. THIS SOFTWARE AND DOCUMENTATION ARE LICENSED 'AS IS', AND YOU, THE LICENSEE, BY MAKING USE THEREOF, ARE ASSUMING THE ENTIRE RISK AS TO THEIR QUALITY AND PERFORMANCE.

IN NO EVENT WILL KRAMER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION, even if advised of the possibility of such damages. In particular, and without prejudice to the generality of the foregoing, Kramer has no liability for any programs or data stored or used with Kramer software, including costs of recovering such programs or data.

Copyright (c) 2013 All World-wide Rights Reserved

All trade marks acknowledged

Kramer operates a policy of continued product improvement, therefore specifications are subject to change without notice as products are updated or revised.

E&OE.
SAFETY WARNING:

1. THERE ARE NO USER SERVICEABLE PARTS WITHIN THE UNIT. REMOVAL OF THE TOP COVER WILL EXPOSE DANGEROUS VOLTAGES. DO NOT OPERATE THE UNIT WITHOUT THE TOP COVER INSTALLED.

2. ENSURE THAT ALL ELECTRICAL CONNECTIONS (INCLUDING THE MAINS PLUG AND ANY EXTENSION LEADS) ARE PROPERLY MADE AND COMPLY WITH ELECTRICAL SAFETY REGULATIONS.

3. ENSURE THAT THE INTEGRITY OF THE EQUIPMENT ISOLATION BARRIER IS MAINTAINED WHEN CONNECTING TO OTHER EQUIPMENT. THIS MEANS THAT ONLY LOW VOLTAGE ISOLATED CIRCUITS MAY BE CONNECTED TO THE SIGNAL INPUTS AND OUTPUTS. IF ANY DOUBT EXISTS CONSULT QUALIFIED SERVICE PERSONNEL.

4. TO PREVENT SHOCK OR FIRE HAZARD DO NOT EXPOSE THIS EQUIPMENT TO RAIN OR MOISTURE. IF SUCH EXPOSURE OCCURS, REMOVE THE PLUG FROM THE MAINS OUTLET AND HAVE THE EXPOSED UNIT CHECKED BY QUALIFIED SERVICE PERSONNEL.

5. DO NOT CONTINUE TO OPERATE THE EQUIPMENT IF YOU HAVE ANY DOUBT ABOUT IT WORKING NORMALLY, OR IF IT IS DAMAGED IN ANY WAY. WITHDRAW THE MAINS PLUG FROM THE MAINS OUTLET AND CONSULT QUALIFIED SERVICE PERSONNEL.

6. DO NOT REMOVE ANY FIXED COVERS UNLESS YOU ARE QUALIFIED TO DO SO AND EVEN THEN WITHDRAW THE MAINS PLUG FROM THE MAINS OUTLET BEFORE YOU START.

7. THIS EQUIPMENT CONTAINS NO USER SERVICEABLE PARTS. REFER ALL SERVICING AND MAINTENANCE TO QUALIFIED SERVICE PERSONNEL.

8. TO AVOID EXPLOSION, DO NOT OPERATE THIS EQUIPMENT IN AN EXPLOSIVE ATMOSPHERE.
INTRODUCTION

1.1. General Introduction

VP-793 is a very flexible image scaler developed specifically for driving large screen displays and multiple screen applications from video or graphics sources. VP-793 features a state of the art digital image processor which provides market leading HD & SD per-pixel multiple low-angle motion-adaptive de-interlacing and automatic film pull-down correction for 3:2 and 2:2, significantly outperforming the capabilities of benchmark competitor products. VP-793 features excellent image processing algorithms for the very best scaling, film and video noise reduction and MPEG artefact reduction.

VP-793 uses a flexible high performance video input front end including HDMI and DVI video with HDCP encryption, as well as computer graphics inputs in SVGA analog and HDMI/DVI digital formats.

The output format can be set to I/O Lock mode where it locks the output frame rate to the input frame rate dynamically without frame rate conversion so as to reduce system latency, or it can be set to a fixed output frame rate for driving basic screens which are not 50Hz-compatible.

A Low latency mode with non-motion adaptive reduced processing is available for when the shortest latency is important.

Outputs are available in DVI/HDMI digital formats with HDCP encryption compatibility.

VP-793 supports Pan, Tilt and Zoom to select a part of the input image, fill the screen and pan within it.

VP-793 supports multi-screen or multi-projector installations by means of Auto Zoom and Edge Blend with elaborate Black Level Uplift.

Edge Blend electronically reduces the brightness level of certain image regions to seamlessly match the brightness of overlapping areas. Auto Zoom automatically crops and zooms the input video image to display a section of the total image on the corresponding projector or screen.

Embedded warp allows adjustment of the image in a projection scenario to match a rotated, tilted or curved screen. For 9:16 portrait mode signage special predefined portrait modes are available to rotate and stretch a video image to fill a +/-90° rotated display panel.

VP-793 also features free form warp capability for non-flat screens in single or multi projector installation. Warp maps created with the PC tool “Warp Generator” can be uploaded into VP-793.

VP-793 is supported by 3rd party PC based auto calibration software creating such warp maps using camera captured information.

System control is via an OSD controlled by keys on the front panel or through the inbuilt TCP/IP Web server.

Additionally a free API manual is published on our Website at the link given below to allow the use of the LAN or RS232 remote control ports.

1.1.1. Packing List

VP-793 is supplied with the following:

1) This manual
2) 3 pin plug IEC mains cable
3) DVI-D output cable
4) CD containing manuals and useful applications
VP-793 SYSTEM DESCRIPTION

2.1. **Product Overview**

VP-793 is designed to accept the following input signals:

- VGA analog (computer interface) via a 15HDD
- DVI (Digital Visual Interface) via DVI-I (supporting a digital or 2nd analog VGA input)
- HDMI via HDMI connector

2.2. **Product Specification**

This section provides technical details for all possible inputs. Note that not all possible input options may be applicable to certain output modes.

2.2.1. **Power Supply Requirement**

100V-264VAC 50 and 60Hz connected via a standard IEC connector located on the rear panel.

2.2.2. **Computer (SVGA) Inputs VESA formats**

Signal formats: DOS, VGA – WUXGA up to 165MHz pixel clock

RGB video level: 0.7V - 1.0V

RGB input impedance: 75 Ohms

Sync format: Separate H and V sync at TTL 5V levels.

2.2.3. **HDMI & DVI Inputs**

HDMI with or without HDCP, 36-bit video deep color compatible. HDCP compatibility can be turned off for use with MAC computers.

DVI-D input with or without HDCP

Signal formats -video

480i and 576i (SD) in double-rate formats (1440 pixels per line), 480p, 576p (ED), 720p, 1080i at 50, 59.94 & 60Hz, 1080p at 24, 25, 30, 50, 59.94 & 60Hz.

Signal formats – computer

DOS, VGA – WUXGA up to 165 MHz pixel clock

2.2.4. **Audio Output**

VP-793 -5xx features an S/PDIF coaxial digital audio outputting HDMI audio.

2.2.5. **Display Output**

A DVI-I connector is provided which will support DVI outputs as well as HDMI with 36-bit video and HD audio formats when connected to a suitable HDMI receiver. When the input signal has HDCP encryption, the DVI-D output connector will carry a similarly HDCP encrypted signal. *When an HDCP encrypted signal is input, but the display device does not support HDCP, the output image will turn black and a message indicating HDCP Signal will come up to indicate this.*
3.1. Menu Tree

<table>
<thead>
<tr>
<th>1st Level</th>
<th>2nd Level</th>
<th>3rd Level</th>
<th>4th Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2. Introduction

The front panel has keys for OSD menu navigation and input channel selection. OSD navigation is through two direction keys and a Menu/Enter key.

1 – Standby key: When applying power to the unit it starts up. This is indicated by the green On LED flashing. Once the unit is operational, the On LED is permanently on. By pressing the Standby Key, the unit is put into standby mode. This is indicated by the red Standby LED being permanently on.

The red Keylocked LED indicates a keypad locking condition issued through the OSD menu. If a key on the front panel is now pressed an OSD message comes up and displays the multiple key press to be applied to unlock the front panel keys. (OSD can be disabled)

2 – Input channel selection keys: All input channels can be directly selected. The active channel is indicated by the red LED above the corresponding channel key being on.

3 – Test Pattern key: Key to directly activate a Test Pattern. Use the up and down keys to toggle through the available test patterns or can be selected in the menu system. The LED is switched on when in Test Pattern mode.

4 – OSD navigational keys: With the Menu key the OSD menu is activated. The up and down keys are used for OSD menu navigation. To exit the OSD menu or any submenu press the up and down key simultaneously or navigate to the Exit item and press the menu/enter key. To access a submenu navigate to it and press the menu/enter key. To apply a change go to the menu item, press the menu/enter key and make a parameter change with the up and down key. Confirm the change by pressing the Menu/enter key. This will also bring you back to the submenu.

With the following multiple key presses further functions can be applied:

- Keypad unlock: Menu and Up and Down
- Input Mode reset: Menu and VGA
- Factory reset: Menu and DVI
- Set output mode to 720p: Menu and HDMI

The back panel features all input and output connectors, communication ports and the power supply connector.

3.3. **Main Menu**

The main menu lists the input channel select item, 6 sub menus, and a menu item for automatic setup of VGA modes. The 6 sub menus are Output, Color, Geometry, Multiple Unit, Enhancement and System.

On each menu page an Exit menu item is available to leave the menu or submenu. The menu may also be left by pressing the up and down key simultaneously.

The menu system is contextual. Some adjustments are not applicable to all signal types or operating modes, in which case those non-applicable functions will be ghosted or greyed out and are not accessible.

All menus have a top status line and a bottom line indicating the firmware revision number. In the status line the currently selected input channel is indicated and the detected mode is identified. The firmware revision number displays the revision number of the boot-loader behind BL, the revision number of the firmware behind FW and the model number VP-793 of the unit.

Navigating the menu system or changing values is done with the up and down keys. In the following sections the set-up method using the up and down keys is described.

To set up your VP-793 it is recommended that you follow this procedure:

Choose the correct output mode and parameters to suit your screen or projector.

Select the correct input signal.

Set the input levels and features appropriately to optimize the appearance of your image.

Set any other parameters to suit your application.

Note: All Input parameters are specific to your chosen input channel and input signal type, they are not global to the unit. All Output parameters are specific to the output so will appear to be global.

3.4. **Input**

In addition to the front panel buttons the list of available inputs can be scrolled through in the Input menu using the Up and Down keys. The new input is not selected until the Menu key is pressed. The list of inputs are: VGA, DVI, HDMI and Test Pattern.

Test patterns can be generated by VP-793 without needing an input connected. When Test Pattern is selected as the input, the required test pattern can be chosen with the menu navigation up and down keys when the menu system has been exited, or it can be selected in menu>System>Input Config>Test Pattern Setup.

3.5. **Output**

This menu contains adjustments associated with setting up outputs from the unit. The items are organized in three sub menus, Display Type, Gamma/Color/Crush and Output Config. Use the up and down keys to scroll to the required item and press the Menu key.

3.5.1. **Display Type**

Settings: LCD/Plasma, Projector

The Display Type setting defaults to Projector. When set to LCD/Plasma Multiple unit configurations with auto zoom are available, but without edge blend. Note: For VP-793 leave the setting to Projector mode, since for this model essentially there is no difference to LCD/Plasma mode.
3.5.2. **Output Mode**
Settings: 640x480, 800x600, 1024x768, 1280x768, 1280x800, 1280x1024, 1360x768, 1366x768, 1400x1050, 1440x900, 1600x1200, 1680x1050, 1920x1200, 480i, 576i, 480p, 576p, 1080i, 720p, 1080p

Set up the desired output resolution with output mode.

The output mode setting should match the native resolution of the imaging device to avoid double scaling.

The default output resolution as set by the factory or after a user issued factory reset is 720p.

3.5.3. **Location**
Settings: Front Tabletop, Front Ceiling, Rear Tabletop, Rear Ceiling

The image can be flipped to accommodate different projection scenarios as well as screens mounted upside down.

3.5.4. **Frame Rate**

Available Settings: 60 Hz, 50 Hz, 48 Hz, 24 Hz, Auto

In auto mode the output frame rate follows the input frame rate as configured in the Output Config menu.

Signals with 24Hz, 25Hz, 48Hz, 50Hz input modes get special treatment, modes with other refresh rates are displayed at 60Hz.

24Hz input modes will be output at 24Hz if the output resolution is set to either 720p or 1080p and the Frame Rate setting in the Output Config menu includes 24Hz, otherwise it is displayed at twice the rate if the Frame Rate setting in the Output Config menu includes 48Hz.

Otherwise a 24Hz input mode is displayed at 60Hz. 48Hz input modes will be output at 48Hz if the Frame Rate setting in the Output Config menu includes 48Hz.

Otherwise it is displayed at 50Hz.

A 25Hz input mode is output at twice the frame rate 50Hz.

An exception to the 24, 25Hz input mode treatment is if the output resolution is set to 480i or 480p. 480i and 480p are always run at 60Hz output rate.

50Hz input modes are displayed at 50Hz output rate.

The output frame rate can also manually set to 24Hz, 48Hz, 50Hz or 60Hz

Only 720p and 1080p output modes are available with 24Hz refresh rate. 480i and 480p output modes are only available at 60Hz refresh rate.

For all other modes 48Hz, 50Hz and 60Hz refresh rate is available.

3.5.5. **I/O Lock**
Settings: Off, Auto

If I/O Lock is switched off the output is run with a fixed refresh rate determined by the frame rate setting, which deviates from the input refresh rate, even if both are nominally at the same rate. This causes occasional frame dropping or repeat.

If I/O Lock is set to Auto the output refresh rate is following the input video refresh rate if locking is possible.

Locking is achieved by modulating the output clock and works if input and output refresh rate are nominally at the same rate, when frame rate is set to 60Hz and the video input is also 60Hz.

If the video input rate is 50 Hz and the Frame rate is set to 60Hz, the output will enter free run mode.

When Frame Rate is set to Auto the matching frame rate is chosen.
The status line of the OSD window under Sync Mode indicates if the output signal is locked to the input signal (I/O Locked) or in free run mode (Free Run).

3.5.6. **Native Color Temp**

Settings: 5500, 6500, 7500, 9300, 10000

Native Color Temp allows the user to select from pre-configured color temperatures to match the display. If both Native Color Temp set here in the Output menu and Color Temp set in the Color menu are set to the same value, no conversion is performed.

3.5.7. **Output Gamma**

Settings: 1.0 to 3.0 in steps of 0.1

Output gamma allows to re-gamma video signals with pre-configured gamma values to match the display. Input gamma and output gamma both default to 2.2. If they are both set to the same value, there is no effect on the image.

Note: If an adjustment to reduce the level of red in the image is required, select a higher number for the (input) Color Temp in the Color menu, or a lower number for the Native Color Temp in the Output menu.

3.5.8. **Output Config**

This Menu provides items to configure the output port.

Optimize for Display

Settings: DVI forced, Optimized, DVI/HDMI

Internally, the display interface processes data at a full ten bits per color. A resolution of ten bits per color is provided for the VGA output. The color depth on the DVI-D output is determined by the supported standard of the attached monitor or device when set to DVI/HDMI. For DVI 1.0 and HDMI 1.1/1.2 devices it is 24 bit, for HDMI 1.3 compliant devices it is up to 36 bit.

DVI forced will output with 24 bit color depth irrespective of the supported standard of the attached monitor.

When the Optimized setting is enabled the output resolution is automatically set to the native screen resolution of the attached display. The color depth is determined in the same way as when set to DVI/HDMI.

DVI Color Space and DVI Range

The color space of the DVI output port can be set to RGB or YPbPr, the range can be set to Expand, Normal, Compress and Auto.

A limited video range is only using the following greyscale for video information - 8 Bit System: 0x01 .. 0xFE, 10 Bit System: 0x004 .. 0x03FB.

Auto makes the best choice for the range for the DVI and 3G-SDI output. If the HDMI/DVI output does not behave as expected, because the HDMI display is not evaluating AVInfoFrames properly, the range can be changed manually.

Frame Rates

Settings: 60 and 50 Hz, 60, 50 and 24 Hz, 60, 50 and 48, 60, 50, 24 and 48

Limits the possible output frame rates for the Auto refresh rate configuration discussed in paragraph 3.5.4.
3.6. **Color**

This menu contains adjustments associated with setting up inputs to the unit. Use the Up and Down keys to scroll to the required item and press the Menu key.

3.6.1. **Black-Level Offset**

Available Settings: 0 IRE, 7.5 IRE

Used to select 7.5 IRE black level set-up adjustment. Should always be set to 7.5 IRE for HDMI video inputs.

3.6.2. **Black-Level**

Available Settings: -50 to 50 in steps of 1

Black level controls the offset applied to the video signal.

3.6.3. **Contrast**

Available Settings: -50 to 50 in steps of 1

Contrast controls the gain applied to the video signal.

3.6.4. **Saturation**

Available Settings: -50 to 50 in steps of 1

Control of video saturation, applies to all video inputs but not computer input signals or formats.

3.6.5. **Hue**

Available Settings: -50 to 50 in steps of 1

Control of video hue, applies to all video inputs but not computer input signals or formats.

3.6.6. **RGB values**

This is a user-defined color temperature setting whereby individual R, G, B gain and offset (bias) can be set so as to accurately calibrate a particular input to the display device.

3.6.7. **Color Temp**

Available Settings: 5500, 6500, 7500, 9300

Color Temp allows the user to select from pre-configured color temperatures to match the color temperature of the incoming signal. If both Color Temp set here in the Color menu and Native Color Temp set in the Output menu are set to the same value, no conversion is performed.

3.6.8. **Input Gamma**

Available Settings: Gamma 1.0, Gamma 1.5, Gamma 2.2, Gamma 2.8

Set this value to match the native gamma of the input signal. Input gamma and output gamma both default to 2.2. If they are both set to the same value, there is no effect on the image.

3.7. **Geometry**

This menu contains adjustments associated with setting up position, aspect ratio and scale of the input signal. Scale can be as simple as an overscan up to complex warping of the image.
3.7.1. **Horizontal and Vertical Position**
Available Settings: in steps of 1 pixel and line
Change the positional values to match the display boarders.

3.7.2. **Edge Control**
Submenu for changing the position of the image edges, effectively scaling the image in horizontal and vertical direction. If Pan Tilt Zoom is activated Edge Control is disabled. It does effectively the same, but has greater range.

3.7.3. **Picture Format**
Available Settings: Standard, Full Screen, Crop, Anamorphic

Picture Format allows a user to select the displayed aspect ratio where the signal input is at variance with the display panel’s natural aspect ratio.

Note that some aspect ratios may not be applicable to all signal types, in which case selecting a non-applicable aspect ratio conversion will have no effect on the displayed image. When a 16:9 image is displayed on a 16:9 panel all settings give an identical full screen image.

Standard preserves the aspect ratio of the incoming image and scales the image to fit into the size of the panel. Dependant on the aspect ratio of the panel the image is either bordered by the right and left side or bottom and top of the panel. Non-used areas of the panel are displayed black (letterboxed).

Full Screen scales the image to the size of the panel without preservation of the aspect ratio.

Crop preserves the aspect ratio and scales the image to fit the screen. Dependant on the aspect ratio of the panel either the top and bottom or right and left areas of the image are cropped.

Anamorphic scales the input image such that it is displayed with a 16:9 aspect ratio when displayed on the screen. The image is further scaled to fit into the size of the panel. Dependant on the aspect ratio of the panel the image is then either bordered by the right and left side or bottom and top of the panel. Non-used areas of the panel are displayed black (letterboxed).

3.7.4. **Overscan**
Available Settings: 0 to 10 in steps of 1
Overscan is used to slightly zoom into the image. This can be used to cut off unwanted features.
3.7.5. **Pan Tilt Zoom**

This menu provided settings to zoom and shrink the image, as well as panning within the image.

Pan Tilt Zoom (PTZ) can be switched ON or OFF.

Note: When switched ON the latency of the system is increased by one frame. Thus, there is a difference of a PTZ setting OFF or ON even if no adjustments are applied.

Note: PTZ settings can be saved ‘per mode’ or ‘globally’. If set to global the same PTZ settings are applied to all input channels or if set to per mode the PTZ setting will only be applied to the input you have selected.

The Zoom slider allows to zoom into the image or shrink it.

When Aspect Lock is set to ON the separate slider for zooming vertically is greyed out and the horizontal zoom or shrink factor is used as vertical factor as well. The aspect ratio is preserved.

When Aspect Lock is OFF horizontal and vertical scaling factors can be chosen separately.

With the Pan and Tilt sliders panning within the image in horizontal and vertical direction is possible. Off raster panning is allowed so the image can be shifted outside the active area of the display.

For convenience the PTZ settings can be reset with one button.

3.7.6. **Warp**

Submenu for warping the image and defining projection condition. The projection condition can be Front Table top, Front Ceiling, Rear Table top or Rear Ceiling. The corresponding image flip is applied on top of the following warp applications.

The warp applications are Keystone, 4-Corner, Rotation, and PC. Special portrait warp applications for clockwise (90°) and counter-clockwise (270°) rotation with scaling are provided as well.

Under the Keystone application the image can be adjusted to match a horizontally and vertically tilted screen. Also, Pin and Barrel distortion of the lens or screen can be adjusted simultaneously.

Under the 4-Corner application all corners can be moved and the image is calculated to fit into the given trapezoid.

The Rotation application let you rotate the image from -180 to 180 degree (one full circle). At the same time Pin and Barrel distortion of the lens or screen can be adjusted again.

Predefined warp maps for portrait mode applications are provided. A 9:16 input image area is rotated and scaled such that is fills a 16:9 screen.

With PC application activated the VP-793 communicates with the PC tool Warp Generator. Warp Generator allows you to define an arbitrary screen in live operation by projecting a grid on the surface and move the grid points to get a rectangular output. This grid information can then be downloaded in one of eight slots used for real-time processing of image data which make the image appear rectangular on a curved screen.

The warp generator software allows rotation, scaling and warping simultaneously.

For convenience all settings can be reset with one button provided in the submenus.
3.8. **Multiple Unit**

VP-793 has a Multiple Unit menu for use in a multi screen application.

Multiple screens are stitched together to provide a bigger display with higher resolution than a single display. Each display is driven by a separate VP-793 unit.

When using the Auto Zoom function - Each VP-793 unit gets the same graphics or video input signal through a distribution amplifier. The VP-793 unit cuts out and resizes the image to display the part of the image assigned to the corresponding screen.

Soft Edge Blending - In a multi projection display the individual projections typically are chosen to overlap to give seamless transitions. Overlapping regions are illuminated by multiple projectors and are brighter than non-overlapping regions. For a uniform brightness over the total display the brightness in the overlapping regions has to be reduced electronically.

Important: When using multiple VP-793 units to drive one single large screen, it is essential that all VP-793 units are I/O locked, otherwise motion tear will be observed at the boundaries of the image processed by each VP-793 unit. It is also essential that all VP-793 units are setup for the same processing latency (either all units are in Best Picture mode or all units are in Low Latency mode).

3.8.1. **Auto Zoom**

Available Settings: ON, OFF

Auto zoom cuts and resizes the video image to display the assigned part of the total image.

Note: AutoZoom is switched OFF automatically when the on-screen menu cannot be properly displayed. The menu is part of the output and is scaled by the warp engine. There are scenarios when the menu may exceed the size of the screen and also only the active video area can be used for the on-screen menu, this would crop the menu and make it impossible to navigate.

A message will indicate such situations. After having made suitable changes the AutoZoom function can be reactivated.

3.8.2. **Units Wide and Units High**

Available Settings: 1, 2, 3, 4 horizontal and 1, 2, 3, 4 vertical

Provides the VP-793 unit with information of the multi screen installation. The number of horizontally and vertically installed screens or projectors is entered.

3.8.3. **Horizontal Pos and Vertical Pos**

Available Settings: 0 to 3 horizontal and 0 to 3 Vertical

Provides the VP-793 unit with the information of which window of the total image it is assigned to. If autozoom is on this tells the unit which part of the image cut out and resize. This selection also determines which edges of the picture are provided with soft edge blends.

3.8.4. **Blend Width**

The blend width menu provides sliders to set up the overlap region for left, right, top and bottom blend region. When changing the slider value from within the OSD the blend area is not updated live or immediately. An update is forced when pressing the menu/enter button, the slider is replaced by the menu.

The overlap is set up in output pixels with a range of up to a third of the output resolution. For a configuration with two projectors in horizontal direction the overlap can be up to two thirds to allow 16:9 images to be made using two combined projectors with an aspect ratio of 4:3 or 5:4.

An offset for the blend region can be set-up as well. The region between the edge and the start of the blend area is black.
Note: Each VP-793 unit needs to be provided with the exact same value for left and right blend region. Top and bottom blend region have to be identical as well, but don’t need to have the same value as left and right. The VP-793 units do not communicate between each other and thus they have to make an assumption for auto zoom calculations and that is overlap of the neighbouring (and those beyond) projectors is identical.

3.8.5. **Blend Curve Type**

The blend curve type menu allows to set the blending characteristics. For setting up the overlap the Align Pattern should be used. Align Pattern reduces the image intensity of each pixel in the blend area by half. When the blend region set up through the blend width menu and the physical blend match the S-Curve characteristics can be switched on. The image intensity is gradually reduced from the start of the blend to the edge of the respective projector image. The S-Curve Value slider allows to control the steepness of the S-Curve. For convenience in this Blend Curve menu a duplicate of the Output Gamma slider can be found to match the grey scale of the images.

When a custom alpha map was loaded into the file system of the unit it is recognized at boot time and the Custom Alpha Map menu item becomes available. Custom alpha maps can be uploaded through the Web or remote control API interface of VP-793. The map can be switched on and off. The map is combined with the Align or S-curve map internally generated. If that is not wanted Blend Curve Type has to be set to off.

The blend map can be warped or left un-warped. Typically, Blend Warping is set to yes at all time. Automatic calibration systems may decide to calculate the blend warp rather than using VP-793 for this purpose. Automatic systems control VP-793 through API calls, in which case the Blend Warping is set automatically and does not need to be touched.

3.8.6. **Black-Level Uplift**

This enables the user to provide a black level uplift to compensate for the additional light leakage from multiple projectors in overlap regions. The black level uplift can be set for the 9 possible regions of the image. Setting the black level uplift for the middle of an edge also sets the black level uplift for the two adjacent corners, and if needed the corners can then be set individually. The sliders for all regions which are not involved in edge blending for a given multiple unit configuration are greyed out, and the black level uplift for all these regions can be set together using the Non-Blend Region parameter.

3.8.7. **Reduce Black-Level Uplift Width**

The Black Level Uplift field may need to be adjusted to achieve a perfect result. There may be an area of light leakage beyond the edge of the active image from the projector. With these controls the edges of the black uplift region can be moved so they can be aligned with the edges of the area of light leakage. In the case of projection under non-rectangular conditions the projection fields of adjacent projectors are not aligned with the blend region. The corners of the non-blend region can be moved to allow tracking of the edge of the projection field of adjacent projectors.
3.9. **Enhancement**

The enhancement menu provides image enhancement functions. Note that the enhancement settings apply to video input signals only, not computer graphics signals.

3.9.1. **Sharpness**

Available Settings: -50 to 50 in steps of 1

Control of the sharpening enhancement filters' levels. These are peaking filters to improve high-frequency response. Note that setting this control too high on a signal which already has good high frequency response will cause ringing or ghosting.

3.9.2. **Detail**

Available Settings: 0, 1, 2, 3

This filter provides powerful 2D image enhancement which can be used to greatly improve detail definition and clarity without causing image ringing or ghosting. It improves both horizontal and vertical detail. Correct setting of the detail enhance filter can make SD signals look virtually indistinguishable from true HD. At setting 0 the filter is switched off, with setting 3 providing the highest effect.

3.9.3. **Video Filters**

The video filters menu provides LTI and CTI filters and TRNR and MNR noise reduction filters.

The LTI filter enhances the sharpness of the luminance component. The CTI filter enhances the sharpness of the chrominance signal by increasing the steepness of color edges.

TRNR (Temporal Recursive Noise Reduction) and MNR (Mosquito Noise Reduction) are available for SD input signals only. These filters reduce spatial and temporal noise and block artifacts.

3.10. **System**

This selection contains functions which are more applicable to system operation than to picture adjustment.

3.10.1. **User**

Available Settings: USER 1, 2, 3, 4

A predefined setting stored under a user name can be selected. Several settings of the VP-793 can be stored under a user name. Thus, different users can store their preferred VP-793 settings and recall these profiles by picking up their user name from this menu.

Note: Using the Web interface, (any number of) settings can also be stored and restored to and from a PC disc drive.

3.10.2. **Names and Profiles**

The Names and Profiles menu provides input masks to rename the generic input channels and user names. User names and input channel names can be changed to any word with a maximum of 12 alpha numeric characters with a value range of 0-9, A-Z and blank.

The Names and Profiles menu allows the user to store profiles under a certain user name. It also allows to copy user profiles by loading a profile stored under one user name and saving it under another user name. Reset Profile allows to restore default settings for the currently selected user. Note: Copying profiles may take several minutes during which the unit cannot be controlled.
3.10.3. **Input Config**

Inputs can be configured through the following sub-menus:

VGA Setup:

Submenu for adjusting analog computer video. A button for automatic setup of frequency and phase of the sampling clock is provided. This automatic adjustment is strongly recommended. Frequency (Clock) and phase can also be altered manually.

DVI/HDMI Setup:

The DVI-I connector will accept either DVI-D or VGA analog inputs. The DVI-I channel can be configured for either.

The equalisation of the DVI interface can be boosted to allow for extended cable length.

The automatic HDMI and DVI Color Space and Range settings can be overwritten in this menu. Range can be set to limited video mode or full range. The color space can be set to RGB or YCbCr.

The DDC can be taken off line. When setting HDCP Input to off VP-793 pretends to be non HDCP compliant forcing the source to not encrypt data which is not copy protected.

Test Pattern:

When the OSD menu is off the test pattern can be toggled through by pressing the up or down keys of the keypad. For unit control through a Web browser or to set up a certain default test pattern use the input configuration menu.

Custom test patterns loaded into the file system of the unit through the Web interface, can be accessed through the same means.

The speed of the moving cross test pattern can be changed. Also, the foreground and background color and the line width of the moving cross test pattern can be changed in this menu.

Note: Most test patterns are scaled in multiple unit configurations with Autozoom enabled since they are useful for setting up the blend and warp of the system. The SMPTE, and Pluge Patterns are not scaled.

Switching Transition:

When switching input channels by default the last frame of the prior displayed image is frozen and displayed until a stable image of the new input channel can be shown. The switchover process is supposed to be as seamless as possible. The source and monitor add switching noise due to unforeseeable activity of the firmware in said devices.

By default VP-793 is in auto frame rate switching and I/O lock mode. In these modes the output of the scaler is forced to adopt the sync timings of the input signal.

In order to get a best smooth switching result between unlocked sources, the source and monitor I/O lock and auto frame rate switching have to be switched off in the Output/Display Type menu. This allows the scaler to provide a constant output determined by its own in built clocks.

The switching transition of VP-793 can be set to Freeze, Blank, Fast Fade and Slow Fade. Freeze halts the prior channel image until the new channel image is stable. Blank switches the output to show a black screen instead of the last channel image. Fast and slow fade have the prior channel image faded out and fade into the new channel video image once it is stable.

3.10.4. **Display Mode**

The “Display Mode” can be set to either Low Latency or Best Picture. In Best Picture optimum image processing is applied, in Low Latency mode the lowest latency is achieved. The flicker of interlaced video is not suppressed totally for the Low Latency setting, it has the disadvantage of conventional CRT TVs, but also their advantage of almost no delay in response, which is important for applications such as gaming, simulation or imaging in medical treatment.

The latency of the system is ⅛ of a frame for progressive input and progressive output when I/O locked. If the output is free running the latency is oscillating between ⅛ of a frame and 1 frame. Switching on PTZ adds one frame of latency. Switching on warp adds another frame of latency. If an interlaced video signal is processed in Best Picture mode, this will add one more field of latency. In Low Latency mode this extra field of latency is avoided.
3.10.5. **Menu Settings**

This menu provides items to change the menu position and menu display time, the time after which the OSD is switched off again with no user interaction. OSD Messages can be activated and deactivated.

The menu language can be altered and the keypad can be locked. Either all keys or the menu and menu navigational keys can be locked. To unlock the keypad a combination of keys has to be pressed at the same time. The locking of the keyboard is accompanied by a message: Keypad is locked. Press Menu and Up and Down to unlock. When successfully unlocking the keypad the message shows up: Keypad unlocked.

3.10.6. **Network Settings**

The Network Settings menu allows to configure the VP-793 TCP/IP address. Under Address Type a static or DHCP leased address can be chosen. The static address and Netmask need to be entered manually.

The Network Settings menu has a section with information on the DHCP Status and IP address assigned to the board, as well as the fixed MAC Address programmed into the VP-793. The DHCP status is Off when static assignment is used or it displays an address when DHCP has leased an address accordingly or it is None assigned if the lease was not successful.

Note: When changing from DHCP to Static mode or vice versa it is strongly recommended that VP-793 is powered down after such a change, then powered back up, so that it is properly recognised by other devices on the network.

3.10.7. **Factory Defaults**

This button let you restore all settings to the default values of the VP-793, thus, provide a means to get back to a known (good) system state. The user is asked to confirm prior to actual restore.
4.1. Introduction

VP-793 features a Web server which connects to a PC Web browser via TCP/IP. The menu system of VP-793 is mirrored into the Web browser and all menu items can be accessed and controlled through the keyboard or mouse of the PC.

4.2. Installing the Software

No extra software needs to be installed on a PC. The PC Web browser is used as the graphical user interface for all control items. To connect to the VP-793 the TCP/IP address of the unit has to be entered into the address list box of the Web browser in the following format http://xxx.xxx.xxx.xxx. The TCP/IP address assigned to VP-793 can be found in the System>Network Settings menu.

4.3. Discovery Tool

Clicking on the link of the recognized box will open a browser and make a connection to the corresponding box. The box identifier is made up of “PV6S” in the case of VP-793 followed by the 6 least significant digits of the MAC address. The MAC address of the box can be found in the System>Network Settings menu.

Note: This is for use on a network not on a single wire connection.

4.4. Software Operation

Once the address has been entered the Web browser starts to load pages from the VP-793 mirroring the menu system of the unit. All menu items are shown as their respective buttons, sliders and list boxes and can be accessed and altered with the PC mouse or corresponding navigational key presses.

Note: When changes within a submenu make other menu items available immediately when using the on-screen menu of the VP-793 this has to be either done manually by clicking on the refresh button of the Web browser or is done with the next periodic auto refresh.
Values are set by sliders. For fine increment of a slider value click on the slider and use the mouse wheel to change the value in steps of 1. Click again and the value is applied.

4.5. **File Upload**

A page for file uploads is provided.

Test patterns can be created and stored on the PC. Four such custom test patterns can be uploaded to and stored by the VP-793 unit. Each of the test patterns in the four slots can be deleted and replaced by another test pattern.

The test patterns need to be in RGB 24bit .PNG format as supported by MS Paint®. For best detail the test patterns should be created with the output resolution VP-793 will be operated at. Non matching resolution test patterns will be scaled to the output resolution.

A single alpha map can be uploaded to the VP-793 unit.

The alpha map format is B/W 16bit .PNG as supported by Adobe Paintshop®. Only the most significant 10 bits are used.

Also a Kramer proprietary format without compression is supported. This format is intended for uploads in proprietary calibration systems directly controlling the VP-793 unit. Thus a .PNG encoder does not have to be implemented on the host side. If the alpha map size exceeds the available storage space on the VP-793 unit the .PNG (lossless compression) has to be used.

```
// Custom Alpha Map File Format
//
// Offset Size Purpose
// 00  4  Header field used to identify custom alpha map file ('AM30')
// 04  2  Horizontal resolution in pixels (big endian)
// 06  2  Vertical resolution in pixels (big endian)
// 08  s  Image data
//
// Each line of image data is built like this:
// One 32-bit unsigned (four bytes, big endian) for every three pixels of image data
// Bits[31..30] - unused
// Bits[20..20] - leftmost pixel of three
// Bits[19..10] - middle pixel of three
// Bits[09..00] - rightmost pixel of three
// Each line has to be zero-padded to make up an integer number of 32-bit unsigned values
//
// e.g. 1280 pixels horizontally needs 427 values (1024/3 = 426.67, rounded up)
//
// So the size (s) of the image data is calculated like this:
// s = CEILING(ImageWidth /3 ) * 4 * ImageHeight
//
// Example of a 1920x1200 custom alpha map (all alpha values set to 1):
//
// 000000 41 4D 33 30 07 80 04 B0 (header)
// 000008 3F FF FF FF 3F FF FF FF (beginning of first line)
// ...  
// 000A08 3F FF FF FF 3F FF FF FF (beginning of second line)
// ...  
// 2ED608 3F FF FF FF FF FF FF FF (beginning of last line)
//
// s = CEILING(1920 /3 ) * 4 * 1200 = 3072000 bytes
```
FIRMWARE UPDATE

5.1. **Introduction**
VP-793 has a USB port which allows a PC connection. With the Kramer PC Updater tool new firmware can be installed on VP-793 for feature upgrades and bug fixes. www.kramerelectronics.com.

The latest firmware version for your processor is published on our Website. Save the file to your computer.

5.2. **Updating Firmware**
VP-793 accepts firmware downloads only in a dedicated Updater mode.

First disconnect the USB lead.

The unit is put in Updater mode by keeping the Menu key pressed at power up. If the Menu key is released within 10 seconds after power up VP-793 is in Updater mode. Otherwise, VP-793 is started normally.

Whilst the Menu key is still pressed the On LED is flashing. When in Updater mode the On LED is flashing two times repeatedly.

Now the USB connection between PC and VP-793 needs to be established and the Kramer PC Updater tool to be started.

The PC Updater tool allows to browse and select a firmware file in BREC format. When a BREC is selected the Update Firmware button has to be pressed and the firmware download to the VP-793 into non volatile flash RAM starts.

After completion of the download VP-793 needs to be restarted normally (without pressing the Menu key) for the change to take effect.

It is recommended that the user now performs a factory reset.
ENVIRONMENTAL AND EMC

6.1. **Recommended Operating Conditions**

Temperature
0°C to 40°C

Humidity (non condensing)
5% to 95%

6.2. **Storage**

Temperature
-25°C to +85°C

Humidity

6.3. **CE and FCC Compliance**

CE: This product complies with the requirements of 2004/108/EC Electromagnetic Compatibility Directive, and 2006/95/EC Low Voltage Directive. Compliance is to EN55022 Class A.

FCC: WARNING: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause interference to radio communications. Operation of this equipment in a residential area is likely to cause interference in which case the user will be required to correct the interference at their own expense.

The user is cautioned that changes and modifications made to the equipment without approval of the manufacturer could void the user’s authority to operate this equipment.

It is suggested that the user use only shielded and grounded signal cables to ensure compliance with FCC rules.

6.4. **PAT Testing**

Earth continuity testing under PAT regulations shall be done to the VP-793 with 8A or 10A only. A test with 25A may damage the unit.

In fact, VP-793 is IT equipment and the IEE Code of Practise to check earth continuity suggests an alternative 20-200mA test. If the PAT tester does not provide this method and a high current test is to be used instead a 8A or 10A test will be acceptable under the same IEE Code of Practise (a minimum of 1.5 times of the VP-793 internal 5A fuse).

You have to be careful where you connect the earth bond test lead when using 8A or 10A. It is to the metal chassis that you must connect the test lead (mains earth). DO NOT CONNECT to the connectors of the rear panel (signal earth). The VP-793 may never work again.
For the latest information on our products and a list of Kramer distributors, visit our Web site where updates to this user manual may be found.

We welcome your questions, comments, and feedback.

Web site: www.kramerelectronics.com
E-mail: info@kramerel.com

SAFETY WARNING
Disconnect the unit from the power supply before opening and servicing.